
Something's wrong. So much computers

compromised, so much in botnets, so much stolen

credit cards, everyday sees more zero-days and

weakens our posture.

We‟re still relying on reactive technology such as anti-

virus which can‟t keep up with the threat. Do you

feel safe after installing the latest security patch? I

don‟t, not anymore. It‟s a chase between us trying

to keep up with vulnerabilities. We still heavily rely

on too much reaction and too little prevention. We

are playing mouse and cat.

I believe we are doing something wrong. I believe we

have to change the way we do security. At this point

I feel like we are loosing the battle.

The fact is: it‟s really hard to write secure software.

It‟s hard to justify in the first place and it‟s really

hard to get right. It‟s been like that since the

beginning and nothing has changed.

The question is « what do we do about it? »

… we use isolation.

Those rectangles represent the code of an

application. The blue part is sensitive code which,

as an example, might be used to administer the

application.

At the left, any bug would compromise the entire

application while at the right, the sensitive code is

isolated. Thereof, the application on the right is

much easier to secure. You can put your « limited »

effort/time in securing this part instead of the entire

picture.

« Security by Correctness » is highly dependent on

size and simplicity. In that sense « Security by

Isolation » is a great complement to it.

Architecture (ia32, amd64):

● At first, we tried isolation. The goal was to build a

deep Isolation (3 layer) between untrusted code

and the kernel.

● Obviouly it dind‟t work as intended and there is a

good reason for this: performance issues,
complexity issues.

● The end result? Current OS security model

(unix/linux/windows/macosx) are highly dependent

on « Security by Correctness ». Any bug in drivers,

services or the kernel is a major issue.

● Don‟t get me wrong, « Security by Correctness » is

an important aspect of security but it should not be

used at this magnitude.

On the server, we do have some tools but the

problem? It‟s still not defacto. Most company does

not use this. It‟s not available by default, requires

custom setup (AIX, HPUX,Solaris, Redhat, most

Linux). Still loads of commercial « enterprise »

application require administrator/root privilege.

On the workstation side it‟s a lot worst. Every

software you download and run get access to

everything you have. I remember seeing some

notice such as « don‟t run Xchat under root

privilege »… yeah right, like root had more to

protect then I do: everything I need to protect, all
my documents are owned by me, not root.

On android each app runs in a different context and

have different rights. This is a great start, but still

not perfect.

Nothing new for any security guy but I think this one

really show how deeply our system architecture is

broken.

If I hook a Firewire cable from my laptop to yours, I

get direct access to your entire system memory

which mean I can unlock your screen, inject a

rootkit or whatever. It‟s game over. BTW, a PoC is

available.

Shouldn't the network card be limited to the network

driver memory space?

Really, something's wrong.

I believe Qubes OS should have a lot more attention

from the community. This is one model which really

has the ability to bring our workstation to a new

level.

In order to understand QubesOS you have to free

your mind about what you used to think when we

say Virtual Machine. We are not talking about

VMware server/ESX here. We‟re talking about

running multiple environments isolated from each

other.

Disposable VM: An environment where you don‟t

care being vulnerable and compromised. You have

no personal info in this VM and each time you close

the window, everything is restored.

Net VM: Your network stack get compromised? No

big deal, it‟s isolated!

Storage VM…

The different window border colors identifies the

different VMs. In this model the VM running my

MP3 player wouldn't have access to my financial

reports.

The PDF I just downloaded from an untrusted

website could be open in a Disposable VM. If the

PDF was malicious it wouldn't have access to

anything interesting and the malware would vanish

as soon as I close it.

This is a really big project which will radically change

the way we do security. [explain (Intel, IBM, HP,

AMD, etc), VT-d/IOMMU]

It‟s very different from other security measures: it‟s

hardware supported.

TXT aka « lagrande » is the Intel implementation of

Trusted Computing.

Measurements: ability to determine which

environment is running (bios, bootloader, os, etc) in

a secure manner.

Sealed storage: Unlock data only when a specific

environment is running.

For more info a highly recommend reading:

Dynamics of Trusted Computing- A Building block

approach from David Grawrock Intel Senior

Principal Engineer and Security Architect.

Here‟s a really simple use case which uses some

trusted computing mechanism. Trusted computing

is a tool and can be used in different ways and this

is only a simple example of what can be done.

In this example, the principle is to send a validation

request to a trusted environment which is isolated

(and can be small and simple) and can be verified

(audited).

On the left we have a standard operating system,

let‟s say Windows or Linux with Firefox.

On the right side, we have a very limited protected

operating system. Protected means protected by

TXT. Therefor, it would not be affected by the

Firewire (DMA) attack I talked about or whatever

else.

At the bottom we have a VMM/Hypervisor using TXT

too.

The VMM and the limited OS are very small and

simple software in which we can have a high level

of trust (tested/audited).

An XML confirmation request is created and sent to

the protected system which displays a confirmation

message to user using a “trusted output”: « Ready

to buy this item for 45$? ». The user accepts or

denies the confirmation request using “trusted

input”.

Both “trusted input and trusted output” are paths

which cannot be manipulated by the Standard

partition.

If the user accepts, the applet asks the TPM to sign

the request with sealed « user‟s ebay key ». Since

the key is sealed, the TPM will take measurements

of the current system and evaluate if the required

environment is loaded before signing the request.

This measurement process is done by the

hardware and it validates every piece of software

running (VMM, Limited OS, Applet).

This process ensures the confirmation has been

done in a trusted state. No malware, no standard

partition, no rootkit can interfere.

This is an excellent demonstration of « security by

isolation » and « security by correctness » in the

right place (small and simple).

I believe this is a better way of getting real security.

Ok, let‟s get on something else. The technical stuff is

always the easy part in Enterprise. The biggest

problem is never on the technical side. It‟s always,

`the Enterprise` itself: paperwork, political issues

and so on.

We, the security community, have been putting all our

focus on technical stuff and I believe we‟ve been

overlooking an important aspect for too long:

Security is a Process (Bruce Schneier) nothing

else; but what kind of efforts are we putting into

getting this process done correctly??!

ISO and NIST are fine but they are audit oriented and

they do not tell you how to build this „security

process‟. They tell you what you should be doing.

Nothing else. The « how » part is somehow

missing. At this date, I consider we apply security in

a ad-hoc fashion. It is still badly understood and

badly implemented in Enterprise.

We have no way to measure our posture. Any new

security effort, let‟s say a new antivirus, could actually

weaken our security posture and we couldn‟t know. At the

end of the project we would congratulate ourselves for

the good work we *think* we just did. After all this new

antivirus sale pitch was promoting a 60% higher rate of

detection! What they weren't telling us is that they

detected a lot more, but their quarantine functionality

sucked. Would you see the increase in workstation

reinstallation due to malware infection?

Now we‟re asked to use external

services/infrastructures (clouds) while we have

absolutely no clue how they manage security. How

can we trust a 3rd party? Does it has something to

do with reputation? What processes do they have

in place? I want some proof!!!

The community has been putting not much effort on

getting those processes right.

In enterprise it‟s always a question of getting a global

picture and putting our energy/money on what

requires it the most.

I believe Enterprise security should be just like a

game. We should be able to see our score and find

out if we did better then the previous months.

But the problem is that we don‟t have any *metrics*.

We‟re blind.

The idea we had is to build a security standard as we

do « Test-Driven Development ».

A standard which would take form depending on what

you *really* put in place (measured). A standard

which is brought alive instead of being an ideal we

fantasize about.

Let‟s say: all interactive access must be strong (2-

factor, encrypted, strong password (8 char). The

standard would test and ensure telnet/ftp are

disabled, pam require 8 char password and 2-factor

authentication.

The software is no magic, he won‟t do security for

you but will help you getting a structure and better

visibility. It is presently develop in Ruby on Rails 3

while probe/agent are written in mostly any

language.

Some are manual controls, some are automated.

What if we could see exactly how we score. Example:

Instead of saying we patch high vulnerability within

2 weeks, speak the truth and get some metrics!

SDLC: Each time you deploy a new software.

Depending on the classification it would require

your developer to comply to the standard: peer

review, threat modeling, vulnerability testing,

penetration testing with proof and approval.

What type of controls do we most have in place?

(Preventive? Detective? Reactive? Etc.)

How mature are we within each process? (patch

management CMM 2)

Process coverage: what part of my policy do I cover

with tests? (Oh I have very few test on “physical

access management”!)

What security domain do I neglect? (Hum, we have

no controls on the “human resource background

check”)

All of this is be address by this “live security

standard”.

In the next few months, Mantor will be providing a

DNSSEC management service. Since this a

security product, I don‟t get to see how people

would let us manage their DNS record without

trusting us. They need to known what we do from a

security standpoint… Well, that‟s what we‟ll do.

We‟ll use the « live security standard » application

to provide insight into how we manage and

maintain the security of our infrastructure (2011).

At the end, if we leverage « security by isolation » to

use « security by correctness » at the right place

and we work on getting metrics out of our « security

processes », I believe we will bring information

system security to a all new level.

